396 research outputs found

    Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Get PDF
    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements Δon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to Δon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    Hydrogen-transfer catalysis with Cp*Ir<sup>III</sup> complexes:The influence of the ancillary ligands

    Get PDF
    Fourteen Cp*IrIII complexes, bearing various combinations of N- and C-spectator ligands, are assayed in hydrogen-transfer catalysis from isopropyl alcohol to acetophenone under various conditions to investigate ligand effects in this widely used reaction. The new cationic complexes bearing monodentate pyridine and N-heterocyclic carbene (NHC) ligands were characterized crystallographically and by variable-temperature nuclear magnetic resonance (VT-NMR). Control experiments and mercury poisoning tests showed that iridium(0) nanoparticles, although active in the reaction, are not responsible for the high activity observed for the most active precatalyst [Cp*Ir(IMe) 2Cl]BF4 (6). For efficient catalysis, it was found necessary to have both NHCs in monodentate form; tying them together in a bis-NHC chelate ligand gave greatly reduced activity. The kinetics of the base-assisted reaction showed induction periods as well as deactivation processes, and H/D scrambling experiments cast some doubt on the classical monohydride mechanism. © 2013 American Chemical Society

    Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Full text link

    Dual Optimization Approach to Bimetallic Nanoparticle Catalysis: Impact of M 1

    No full text

    Dendritic Fibrous Nanosilica (DFNS) for RNA Extraction from Cells

    No full text
    Efficient RNA extraction is critical for all downstream molecular applications and techniques. Despite the availability of several commercial kits, there is an enormous scope to develop novel materials that have high binding and elution capacities. Here we show that RNA from the cells can be extracted by dendritic fibrous nanosilica (DFNS) with higher efficiency than commercially available silica. This could be because of the unique fibrous morphology, high accessible surface area, and nano-size particles of DFNS. We studied various fundamental aspects, including the role of particle size, morphology, surface area, and charge on silica surface on RNA extraction efficiency. Infrared spectroscopy (FTIR) studies revealed the interaction of functional groups of the RNA with the silica surface, causing selective binding. Due to the sustainable synthesis protocol of DFNS, the simplicity of various buffers and washing solutions used, this RNA extraction kits can be assembled in any lab. In addition to the fundamental aspects of DFNS-RNA interactions, this study has the potential to initiate the development of indigenous DFNS based kits for RNA extraction
    • 

    corecore